Relating Fractions, Decimals, and Percent

Concept of Decimal

A decimal is a representation of a fraction whose denominator is a multiple of 10 .

Examples:
$\frac{1}{10}=0.1$
$\frac{2}{100}=0.02$
$\frac{455}{100}=4 \frac{58}{100}=4.56$
$\frac{104}{1000}=0.104$
$\frac{37}{1000}=0.0037$

Remarks:

1) It is understood that for whole numbers, the decimal point is located right after the ones digit.
2) The series of digits to the right of the decimal point is also called the fractional part of the decimal number. Adding zeros after the last digit of the fractional part does not change the value of the number.
Example: $0.5=0.50=0.500$, i.e. $\frac{5}{10}=\frac{50}{100}=\frac{500}{1000}$
The place value of each digit with respect to the decimal point is illustrated below:

Thousands	Hundreds	Tens	Ones	and	Tenths	Hundredths	Thousandths
1,000	100	10	1		1/10	1/100	1/1000
				ind Po			

Examples:

$\frac{1}{10}=0.1$	read as "one tenths"
$\frac{2}{100}=0.02$	read as "two hundredths"
$\frac{456}{100}=4 \frac{56}{100}=4.56$	read as "four and fifty-six hundredths"
$\frac{104}{1000}=0.104$	read as "one hundred four thousandths"
$\frac{37}{10000}=0.0037$	read as "thirty seven ten thousandths"

736.8952 is read as "seven hundred thirty-six and eight thousand nine hundred fifty-two ten thousandths" and written in expanded form as follows:
$736.8952=7(100)+3\left(10-+6(1)+8\left(\frac{1}{10}\right)+9\left(\frac{1}{100}\right)+5\left(\frac{1}{1000}\right)+2\left(\frac{1}{10000}\right)\right.$ $=700+30+6+\frac{8}{10}+\frac{9}{100}+\frac{5}{1000}+\frac{2}{10000}$

Ordering of Decimals

O

Fundamental operations

DECIMALS


```
(ii) If the divisor is a whole number and the dividend has a fractional part, then the decimal point of the quotient is located directly above the
    decimal point in the dividend. Note that we can add as many zeros after the last digit in the fractional part of the dividend.
Example: 858.4 + 64 = 13.4125
    (iii) If the divisor has a fractional part, multiply both the divisor and dividend by an appropriate multiple of }10\mathrm{ so that the divisor becomes a
    whole number, and then apply case (i). Recall that mutiplying by a multiple of 10 or a power of 10, i.e. 10 is equivalent to moving the
    decimal point n places to the right.
    Example: 1.4916 +0.24 = 149.16 + 24=6.215
```


Fractions and Decimals

WHAT TO REMEMBER

How to convert fractions to decimals

(ii) Perform the usual long division wherein the numerator is the dividend and the denominator is the divisor.There are two ways to convert fractions to decimals:
(i) First, convert the fraction to an equivalent fraction whose denominator is a power of 10 . Then, convert it to decimal.

From previous examples, we have $\frac{789}{15}=52.6$

Examples:

1) $\frac{1}{2}=\frac{5}{10}$ hence, $\frac{1}{2}=0.5$
2) $\frac{7}{50}=\frac{14}{100}$ hence, $\frac{7}{50}=0.14$

How to convert decimals to fractions

(i) To convert a terminating decimal to a fraction, apply the concept of place value.

Examples:

1) $0.23=\frac{23}{100}$
2) $4.506=4 \frac{506}{1000}=4 \frac{253}{500}=\frac{2,253}{500}$
(ii) To convert a repeating decimal to a fraction, refer to the examples below.

Examples:

1) Convert the repeating decimal $0.3=0.33333 \ldots$ to a fraction.

Solution: Let $\mathrm{x}=0.3$ (multiply the equation by 10)
$10 \mathrm{x}=3.3$
$-\mathrm{x}=0.3$
$x=\frac{3}{9}$
Therefore, $0.3=\frac{3}{9}$ or $\frac{1}{3}$.
2) Show that the repeating decimal $1.232323 \ldots$ or $1 . \overline{26}$ is equal to $\frac{126}{99}$

Solution: Let $\mathrm{x}=1 . \overline{26}$ (multiply the equation by 100)
$100 \mathrm{x}=126 . \overline{26}$
$-x=1 . \overline{26}$
$99 x=125$
$99 x=1$
$x=\frac{125}{99}$
Therefore, $1 . \overline{26}=\frac{125}{99}$
3) Convert 0.5481 to a fraction.

Solution: Let $x=0.5 \overline{481}$ (multiply the equation by 10,000)
$10,000 x=5481 . \overline{481}$
$-10 x=5.481$
$9990 x=5476$
$x=$ or
Therefore, $0.5 \overline{481}=\frac{2738}{4995}$

Fractions, Decimals, Percent

A percent which means "per hundred" is a representation of a fraction whose denominator is 100 . Thus, expressing a number in percent is like
comparing it with 100 .

```
Examples: }25%=\frac{25}{100}\quad88%=\frac{88}{100}\quad3%=\frac{3}{100
```


Percent to Decimal

Rule: Divide the percent by 100%. This is equivalent to moving the decimal point two places to the left and dropping the $\%$ sign.

Examples:

1) $75 \%=.75$
2) $1.468 \%=.01468$
3) $239 \%=2.39$

A. Perform the indicated operations and simplify. Express all answers in decimals (at most 6 decimal places).
$1.2 .13(4.75-50.9908)+0.626$
2. $930.22 \div 5.078-(6.11)^{3}$
B. Solve the following word problems.
3. Maria was asked to go to the market to buy $2 \frac{1}{2}$ kilos of pork, $\frac{1}{4}$ kilo of garlic, and 6 pieces of saba. One kilo of pork costs PhP215, 1 kilo of garlic costs PhP105, and one piece of saba costs PhP2.30.
If Maria is given PhP700, will she be able to buy everything she was asked to buy? If yes, how much change is left, if any?
4. Pedro needs to call his classmates to give them final instructions about their class project. He thinks he will need about 2 minutes to talk to each one of them. If his cellular phone has a current load worth PhP425 and a call would cost him PhP6. 15 per minute, how many of his classmates will he be able to talk to?
5. Juan drove his car to the gas station for refuelling. If the price of the gasoline is Php38.31 per liter and he paid PhP1000 for gas purchase, how many liters of gasoline were pumped into his car? Round off the answer to the nearest thousandthe (or three decimal places).
6. If the old price of a product is PhP 100 and the new price is $\mathrm{PhP500}$, what is the percentage increase in the price?

