







## **Complex Fractions**

A complex fraction is a fraction whose numerator and/or denominator is/are also fractions or combinations of fractions.

A complex fraction may be simplified by reducing the entire numerator and/or entire denominator into single fractions and applying the rule on division of fractions.

Example: 
$$\frac{\frac{2}{5} + \frac{1}{3}}{\frac{4}{7} - \frac{1}{2}} = \frac{\frac{6}{15} + \frac{5}{15}}{\frac{8}{14} - \frac{7}{14}} = \frac{\frac{11}{15}}{\frac{1}{14}} = \frac{11}{15} \bullet \frac{14}{1} = \frac{154}{15}$$

Recall the PEMDAS (Parenthesis, Exponent, Multiplication, Division, Addition, Subtraction) Rule in the order of operations.

## Do you have your answers to the assignment?

## TIME TO FIND OUT

1. 
$$\frac{3}{4} - (3\frac{1}{2} + \frac{11}{8}) + 6\frac{5}{9}$$
  
Solution:  $\frac{3}{4} - (3\frac{1}{2} + \frac{11}{8}) + 6\frac{5}{9} = \frac{3}{4} - (\frac{7}{2} + \frac{11}{8}) + \frac{59}{9}$   
 $= \frac{3}{4} - \frac{7}{2} - \frac{11}{8} + \frac{59}{9} = \frac{54 - 252 - 99 + 472}{72} = \frac{175}{72}$ 

Note that  $4 = 2^2$ ,  $8 = 2^3$ , and  $9 = 3^3$ . Thus, LCD =  $2^3 \cdot 3^2 = 72$ .

2. 
$$6\frac{1}{4} \div (\frac{2}{5} - 8\frac{6}{10})$$

Solution: 
$$6\frac{1}{4} \div (\frac{2}{5} - 8\frac{6}{10}) = \frac{25}{4} \div (\frac{2}{5} - \frac{43}{5}) = \frac{25}{4} \div (-\frac{41}{5}) = \frac{25}{4} \cdot (-\frac{5}{41}) = -\frac{125}{164}$$

Note that  $8 = 2^3$ ,  $225 = 3^2 \cdot 5^2$ , and  $36 = 2^2 \cdot 3^2$ . Thus, LCD =  $2^3 \cdot 3^2 \cdot 5^2 = 1800$ .

3. 
$$\frac{\frac{1}{5} - 7\frac{9}{8} + 10}{3\frac{4}{5} - 2\frac{3}{7}}$$

Solution: entire numerator =  $\frac{1}{5}$  -  $(8 + \frac{1}{8})$  +  $10 = 2 + \frac{1}{5} - \frac{1}{8} = \frac{83}{40}$ 

entire denominator =  $3 + \frac{4}{5} = (2 + \frac{3}{7}) = 1 + \frac{4}{5} - \frac{3}{7} = 1 + \frac{13}{35} = \frac{48}{35}$ 

Therefore,  $\frac{\frac{1}{5} - 7\frac{9}{8} + 10}{3\frac{4}{5} - 2\frac{3}{7}} = \frac{83}{40} \div \frac{48}{35} = \frac{83}{40} \bullet \frac{35}{48} = \frac{581}{384} \text{ or } 1\frac{197}{384}$ 

1. Find the value of x that satisfies the equation 156 +  $\frac{3}{x+5}$  = 30.

Solution: Multiplying both sides of the equation 156 +  $\frac{3}{x+5}$  = 30 by (x + 5), we get 156(x + 5) + 3 = 30(x + 5).

$$\Rightarrow$$
 156x + 780 + 3 = 30x + 150

$$\Rightarrow$$
 156x - 30x = 150 - 780 - 3

$$\Rightarrow 126x = -633$$

$$\Rightarrow$$
 x =  $-\frac{633}{126}$  or  $-\frac{211}{42}$ 

## Let's relate it to real-life situations...

SOLVE THE FOLLOWING PROBLEMS

1.

A small pack of gulaman powder requires 1 3/4 cups of water for cooking. How many cups of water are needed to cook 7 1/2 packs of gulaman?

2.

A complete set of a grade school uniform requires 1 3/4 meters of white cloth for the blouse and 2 1/3 meters of blue cloth for the pants. How much clothing material of each color is required for 35 sets of uniform?

3.

If a class of 120 students took the Business Math exam and 3/5 passed the test, how many students failed the test? 4

Len bought a lot measuring 450 square meters. If 25 sq.m. is allotted for a storage room, what fraction of the entire lot is the storage room?

