

Complex Fractions

A complex fraction is a fraction whose numerator and/or denominator is/are also fractions or combinations of fractions. A complex fraction may be simplified by reducing the entire numerator and/or entire denominator into single fractions and applying the rule on division of fractions.

Example: $\quad \frac{\frac{2}{5}+\frac{1}{3}}{\frac{4}{7}-\frac{1}{2}}=\frac{\frac{6}{15}+\frac{5}{15}}{\frac{8}{14}-\frac{7}{14}}=\frac{\frac{11}{15}}{\frac{1}{14}}=\frac{11}{15} \cdot \frac{14}{1}=\frac{154}{15}$

Recall the PEMDAS (Parenthesis, Exponent,
Multiplication, Division, Addition
Subtraction) Rule in the order of operations.

1. $\frac{3}{4}-\left(3 \frac{1}{2}+\frac{11}{8}\right)+6 \frac{5}{9}$

Solution: $\frac{3}{4}-\left(3 \frac{1}{2}+\frac{11}{8}\right)+6 \frac{5}{9}=\frac{3}{4}-\left(\frac{7}{2}+\frac{11}{8}\right)+\frac{59}{9}$

$$
=\frac{3}{4}-\frac{7}{2}-\frac{11}{8}+\frac{59}{9}=\frac{54-252 \cdot .99+472}{72}=\frac{175}{72}
$$

Note that $4=2^{2}, 8=2^{3}$, and $9=3^{3}$. Thus, $L C D=2^{3} \cdot 3^{2}=72$.
2. $6 \frac{1}{4} \div\left(\frac{2}{5}-8 \frac{6}{10}\right)$

Solution: $\quad 6 \frac{1}{4} \div\left(\frac{2}{5}-8 \frac{6}{10}\right)=\frac{25}{4} \div\left(\frac{2}{5}-\frac{43}{5}\right)=\frac{25}{4}+\left(-\frac{41}{5}\right)=\frac{25}{4} \cdot\left(-\frac{5}{41}\right)=-\frac{125}{164}$
Note that $8=2^{3}, 225=3^{2} \cdot 5^{2}$, and $36=2^{2} \cdot 3^{2}$. Thus, $L C D=2^{3} \cdot 3^{2} \cdot 5^{2}=1800$.
3. $\frac{\frac{1}{5}-7 \frac{9}{8}+10}{3 \frac{4}{5}-2 \frac{3}{7}}$

Solution: entire numerator $=\frac{1}{5}-\left(8+\frac{1}{8}\right)+10=2+\frac{1}{5}-\frac{1}{8}=\frac{83}{40}$
entire denominator $=3+\frac{4}{5}=\left(2+\frac{3}{7}\right)=1+\frac{4}{5}-\frac{3}{7}=1+\frac{13}{35}=\frac{48}{35}$
Therefore, $\frac{\frac{1}{5}-7 \frac{9}{8}+10}{3 \frac{4}{5}-2 \frac{3}{7}}=\frac{83}{40} \div \frac{48}{35}=\frac{83}{40} \cdot \frac{35}{48}=\frac{581}{384}$ or $1 \frac{197}{384}$

Lets relate it to real-life situations..
Solution: Multiplying both sides of the equation $156+\frac{3}{x+5}=30$ by $(x+5)$, we get $156(x+5)+3=30(x+5)$.
$\Rightarrow 156 \mathrm{x}+780+3=30 \mathrm{x}+150$
$\Rightarrow 156 \mathrm{x}-30 \mathrm{x}=150-780-3$
$\Rightarrow 126 x=-633$
$\Rightarrow x=-\frac{623}{126}$ or $-\frac{211}{12}$
SOLVE THE FOLLOWING PROBLEMS

1.

A small pack of gulaman powder requires $1^{3 / 4}$ cups of water for cooking. How many cups of water are needed to cook $71 / 2$ packs of gulaman?

2.

A complete set of a grade school uniform requires $13 / 4$ meters of white cloth for the blouse and
$21 / 3$ meters of blue cloth for the pants. How much clothing material of each color is required for 35 sets of uniform?
3.

If a class of 120 students took the Business Math exam and $3 / 5$ passed the test, how many students failed the test?
4.

Len bought a lot measuring 450 square meters. If $25 \mathrm{sq} . \mathrm{m}$. is allotted for a storage room, what fraction of the entire lot is the storage room?

